Трудовое право. Заполнение. Отпуск. Трудовой договор. Увольнение

Доклад: Строение и деление клетки. Биология: клетки. Строение, назначение, функции Все что нужно знать о клетке биология

(ядерные). Прокариотические клетки - более простые по строению, по-видимому, они возникли в процессе эволюции раньше. Эукариотические клетки - более сложные, возникли позже. Клетки, составляющие тело человека, являются эукариотическими.

Несмотря на многообразие форм организация клеток всех живых организмов подчинена единым структурным принципам.

Прокариотическая клетка

Эукариотическая клетка

Строение эукариотической клетки

Поверхностный комплекс животной клетки

Состоит из гликокаликса , плазмалеммы и расположенного под ней кортикального слоя цитоплазмы . Плазматическая мембрана называется также плазмалеммой, наружной клеточной мембраной. Это биологическая мембрана , толщиной около 10 нанометров. Обеспечивает в первую очередь разграничительную функцию по отношению к внешней для клетки среде. Кроме этого она выполняет транспортную функцию. На сохранение целостности своей мембраны клетка не тратит энергии: молекулы удерживаются по тому же принципу, по которому удерживаются вместе молекулы жира - гидрофобным частям молекул термодинамически выгоднее располагаться в непосредственной близости друг к другу. Гликокаликс представляет из себя «заякоренные» в плазмалемме молекулы олигосахаридов , полисахаридов , гликопротеинов и гликолипидов. Гликокаликс выполняет рецепторную и маркерную функции. Плазматическая мембрана животных клеток в основном состоит из фосфолипидов и липопротеидов со вкрапленными в нее молекулами белков , в частности, поверхностных антигенов и рецепторов . В кортикальном (прилегающем к плазматической мембране) слое цитоплазмы находятся специфические элементы цитоскелета - упорядоченные определённым образом актиновые микрофиламенты . Основной и самой важной функцией кортикального слоя (кортекса) являются псевдоподиальные реакции: выбрасывание, прикрепление и сокращение псевдоподий . При этом микрофиламенты перестраиваются, удлиняются или укорачиваются. От структуры цитоскелета кортикального слоя зависит также форма клетки (например, наличие микроворсинок).

Структура цитоплазмы

Жидкую составляющую цитоплазмы также называют цитозолем. Под световым микроскопом казалось, что клетка заполнена чем-то вроде жидкой плазмы или золя, в котором «плавают» ядро и другие органоиды . На самом деле это не так. Внутреннее пространство эукариотической клетки строго упорядочено. Передвижение органоидов координируется при помощи специализированных транспортных систем, так называемых микротрубочек , служащих внутриклеточными «дорогами» и специальных белков динеинов и кинезинов , играющих роль «двигателей». Отдельные белковые молекулы также не диффундируют свободно по всему внутриклеточному пространству, а направляются в необходимые компартменты при помощи специальных сигналов на их поверхности, узнаваемых транспортными системами клетки.

Эндоплазматический ретикулум

В эукариотической клетке существует система переходящих друг в друга мембранных отсеков (трубок и цистерн), которая называется эндоплазматическим ретикулумом (или эндоплазматическая сеть, ЭПР или ЭПС). Ту часть ЭПР, к мембранам которого прикреплены рибосомы , относят к гранулярному (или шероховатому ) эндоплазматическому ретикулуму, на его мембранах происходит синтез белков. Те компартменты, на стенках которых нет рибосом, относят к гладкому (или агранулярному ) ЭПР, принимающему участие в синтезе липидов . Внутренние пространства гладкого и гранулярного ЭПР не изолированы, а переходят друг в друга и сообщаются с просветом ядерной оболочки .

Аппарат Гольджи
Ядро
Цитоскелет
Центриоли
Митохондрии

Сопоставление про- и эукариотической клеток

Наиболее важным отличием эукариот от прокариот долгое время считалось наличие оформленного ядра и мембранных органоидов. Однако к 1970-1980-м гг. стало ясно, что это лишь следствие более глубинных различий в организации цитоскелета . Некоторое время считалось, что цитоскелет свойственен только эукариотам, но в середине 1990-х гг. белки, гомологичные основным белкам цитоскелета эукариот, были обнаружены и у бактерий.

Именно наличие специфическим образом устроенного цитоскелета позволяет эукариотам создать систему подвижных внутренних мембранных органоидов. Кроме того, цитоскелет позволяет осуществлять эндо- и экзоцитоз (как предполагается, именно благодаря эндоцитозу в эукариотных клетках появились внутриклеточные симбионты, в том числе митохондрии и пластиды). Другая важнейшая функция цитоскелета эукариот - обеспечение деления ядра (митоз и мейоз) и тела (цитотомия) эукариотной клетки (деление прокариотических клеткок организовано проще). Различия в строении цитоскелета объясняют и другие отличия про- и эукариот - например, постоянство и простоту форм прокариотических клеток и значительное разнообразие формы и способность к её изменению у эукариотических, а также относительно большие размеры последних. Так, размеры прокариотических клеток составляют в среднем 0,5-5 мкм , размеры эукариотических - в среднем от 10 до 50 мкм. Кроме того, только среди эукариот попадаются поистине гигантские клетки, такие как массивные яйцеклетки акул или страусов (в птичьем яйце весь желток - это одна огромная яйцеклетка), нейроны крупных млекопитающих, отростки которых, укрепленные цитоскелетом, могут достигать десятков сантиметров в длину.

Анаплазия

Разрушение клеточной структуры (например, при злокачественных опухолях) носит название анаплазии .

История открытия клеток

Первым человеком, увидевшим клетки, был английский учёный Роберт Гук (известный нам благодаря закону Гука). В году, пытаясь понять, почему пробковое дерево так хорошо плавает, Гук стал рассматривать тонкие срезы пробки с помощью усовершенствованного им микроскопа . Он обнаружил, что пробка разделена на множество крошечных ячеек, напомнивших ему монастырские кельи, и он назвал эти ячейки клетками (по-английски cell означает «келья, ячейка, клетка»). В году голландский мастер Антоний ван Левенгук (Anton van Leeuwenhoek, -) с помощью микроскопа впервые увидел в капле воды «зверьков» - движущиеся живые организмы. Таким образом, уже к началу XVIII века учёные знали, что под большим увеличением растения имеют ячеистое строение, и видели некоторые организмы, которые позже получили название одноклеточных. Однако клеточная теория строения организмов сформировалась лишь к середине XIX века, после того как появились более мощные микроскопы и были разработаны методы фиксации и окраски клеток. Одним из её основоположников был Рудольф Вирхов , однако в его идеях присутствовал ряд ошибок: так, он предполагал, что клетки слабо связаны друг с другом и существуют каждая «сама по себе». Лишь позднее удалось доказать целостность клеточной системы.

См. также

  • Сравнение строения клеток бактерий, растений и животных

Ссылки

  • Molecular Biology Of The Cell, 4е издание, 2002 г. - учебник по молекулярной биологии на английском языке
  • Цитология и генетика (0564-3783) публикует статьи на русском, украинском и английском языках по выбору автора, переводится на английский язык (0095-4527)

Wikimedia Foundation . 2010 .

Смотреть что такое "Клетка (биология)" в других словарях:

    БИОЛОГИЯ - БИОЛОГИЯ. Содержание: I. История биологии.............. 424 Витализм и машинизм. Возникновение эмпирических наук в XVI XVIII вв. Возникновение и развитие эволюционной теории. Развитие физиологии в XIX в. Развитие клеточного учения. Итоги XIX века … Большая медицинская энциклопедия

    - (cellula, cytus), основная структурно функциональная единица всех живых организмов, элементарная живая система. Может существовать как отд. организм (бактерии, простейшие, нек рые водоросли и грибы) или в составе тканей многоклеточных животных,… … Биологический энциклопедический словарь

    Клетки аэробных спорообразующих бактерий имеют палочковидную форму и в сравнении с неспороносными бактериями, как правило, более крупных размеров. Вегетативные формы спороносных бактерий обладают более слабым активным движением, хотя им… … Биологическая энциклопедия

    У этого термина существуют и другие значения, см. Клетка (значения). Клетки крови человека (РЭМ) … Википедия

Клетки, образующие ткани растений и животных, значительно различаются по форме, размерам и внутреннему строению. Однако все они обнаруживают сходство в главных чертах процессов жизнедеятельности, обмена веществ, в раздражимости, росте, развитии, способности к изменчивости.

Биологические превращения, происходящие в клетке, неразрывно связаны с теми структурами живой клетки, которые отвечают за выполнение гой или иной функции. Такие структуры получили название органоидов.

Клетки всех типов содержат три основных, неразрывно связанных между собой компонента:

  1. структуры, образующие ее поверхность: наружная мембрана клетки, или клеточная оболочка, или цитоплазматическая мембрана;
  2. цитоплазма с целым комплексом специализированных структур — органоидов (эндоплазматическая сеть, рибосомы, митохондрии и пластиды, комплекс Гольджи и лизосомы, клеточный центр), присутствующих в клетке постоянно, и временных образований, называемых включениями;
  3. ядро - отделено от цитоплазмы пористой мембраной и содержит ядерный сок, хроматин и ядрышко.

Строение клетки

Поверхностный аппарат клетки (цитоплазматическая мембрана) растений и животных имеет некоторые особенности.

У одноклеточных организмов и лейкоцитов наружная мембрана обеспечивает проникновение в клетку ионов, воды, мелких молекул других веществ. Процесс проникновения в клетку твердых частиц называется фагоцитозом, а попадание капель жидких веществ - пиноцитозом.

Наружная плазматическая мембрана регулирует обмен веществ между клеткой и внешней средой.

В клетках эукариот есть органоиды, покрытые двойной мембраной, - митохондрии и пластиды. Они содержат собственные ДНК и синтезирующий белок аппарат, размножаются делением, то есть имеют определенную автономию в клетке. Кроме АТФ, в митохондриях происходит синтез небольшого количества белка. Пластиды свойственны клеткам растений и размножаются путем деления.

Строение клеточной оболочки
Виды клеток Строение и функции наружного и внутреннего слоев клеточной оболочки
наружный слой (хим. состав, функции)

внутренний слой - плазматическая мембрана

химический состав функции
Клетки растений Состоят из клетчатки. Этотслой служит каркасом клетки и выполняет защитную функцию Два слоя белка, между ними - слой липидов Ограничивает внутреннюю среду клетки от внешней и поддерживает эти различия
Клетки животных Наружный слой (гликокаликс) очень тонкий и эластичный. Состоит из полисахаридов и белков. Выполняет защитную функцию. Тоже Специальные ферменты плазматической мембраны регулируют проникновение многих иононов и молекул в клетку и выход их во внешнюю среду

К одномембранным органоидам относятся эндоплазматическая сеть, комплекс Гольджи, лизосомы, различные типы вакуолей.

Современные средства исследования позволили биологам установить, что по строению клетки все живые существа следует делить на организмы «безъядерные» - прокариоты и «ядерные» - эукариоты.

У прокариот-бактерий и сине-зеленых водорослей, а также вирусов имеется всего одна хромосома, представленная молекулой ДНК (реже РНК), расположенной непосредственно в цитоплазме клетки.

Строение органоидов цитоплазмы клетки и их функции
Главные рганоиды Строение Функции
Цитоплазма Внутренняя полужидкая среда мелкозернистой структуры. Содержит ядро и органоиды
  1. Обеспечивает взаимодействие ядра и органоидов
  2. Регулирует скорость биохимических процессов
  3. Выполняет транспортную функцию
ЭПС - эндоплазматическая сеть Система мембран в цитоплазме» образующая каналы и более крупные полости, ЭПС бывает 2-х типов: гранулированная (шероховатая), на которой расположено множество рибосом, и гладкая
  1. Осуществляет реакции, связанные с синтезом белков, углеводов, жиров
  2. Способствует переносу и циркуляции питательных веществ в клетке
  3. Белок синтезируется на гранулированной ЭПС, углеводы и жиры — на гладкой ЭПС
Рибосомы Мелкие тельца диаметром 15-20 мм Осуществляют синтез белковых молекул, их сборку из аминокислот
Митохондрии Имеют сферическую, нитевидную, овальную и другие формы. Внутри митохондрий находятся складки (дл. от 0,2 до 0,7 мкм). Внешний покров митохондрий состоит из 2-х мембран: наружная - гладкая, и внутренняя - образует выросты-кресты, на которых расположены дыхательные ферменты
  1. Обеспечивают клетку энергией. Энергия освобождается при распаде аденозинтрифосфорной кислоты (АТФ)
  2. Синтез АТФ осуществляется ферментами на мембранах митохондрий
Пластиды - свойственны только клеткам раститений, бывают трех типов: Двумембранные органеллы клетки
хлоропласты Имеют зеленый цвет, овальную форму, ограничены от цитоплазмы двумя трехслойными мембранами. Внутри хлоропласта располагаются грани, где сосредоточен весь хлорофилл Используют световую энергию солнца и создают органические вещества из неорганических
хромопласты Желтые, оранжевые, красные или бурые, образуются в результате накопления каротина Придают различным частям растений красную и желтую окраску
лейкопласты Бесцветные пластиды (содержатся в корнях, клубнях, луковицах) В них откладываются запасные питательные вещества
Комплекс Гольджи Может иметь разную форму и состоит из отграниченных мембранами полостей и отходящих от них трубочек с пузырьками на конце
  1. Накапливает и выводит органические вещества, синтезируемые в эндоплазматической сети
  2. Образует лизосомы
Лизосомы Округлые тельца диаметром около 1 мкм. На поверхности имеют мембрану (кожицу), внутри которой находится комплекс ферментов Выполняют пищеварительную функцию - переваривают пищевые частицы и удаляют отмершие органоиды
Органоиды движения клеток
  1. Жгутики и реснички, представляющие из себя выросты клетки и имеющие однотипное строение у животных и растений
  2. Миофибриллы - тонкие нити длиной более 1 см диаметром 1 мкм, расположенные пучками вдоль мышечного волокна
  3. Псевдоподии
  1. Выполняют функцию движения
  2. За счет их происходит сокращение мышц
  3. Передвижение за счет сокращения особого сократительного белка
Клеточные включения Это непостоянные компоненты клетки — углеводы, жиры и белки Запасные питательные вещества, используемые в процессе жизнедеятельности клетки
Клеточный центр Состоит из двух маленьких телец - центриолей и центросферы - уплотненного участка цитоплазмы Играет важную роль при делении клеток

Эукариоты обладают большим богатством органоидов, имеют ядра, содержащие хромосомы в виде нуклеопротеидов (комплекс ДНК с белком гистоном). К эукариотам относятся большинство современных растений и животных как одноклеточных, так и многоклеточных.

Выделяют два уровня клеточной организации:

  • прокариотический - их организмы очень просто устроены - это одноклеточные или колониальные формы, составляющие царство дробянок, синезеленых водорослей и вирусов
  • эукариотический - одноклеточные колониальные и многоклеточные формы, от простейших - корненожки, жгутиковые, инфузории — до высших растений и животных, составляющие царство растений, царство грибов, царство животных

Строение и функции ядра клетки
Главные органоиды Строение Функции
Ядро растительной и животной клетки Округлой или овальной формы
Ядерная оболочка состоит из 2-х мембран с порами
  1. Отграничивает ядро от цитоплазмы
  2. Осуществляется обмен между ядром и цитоплазмой
Ядерный сок (кариоплазма) - полужидкое вещество Среда, в которой находятся ядрышки и хромосомы
Ядрышки сферической или неправильной формы В них синтезируется РНК, которая входит в состав рибосомы
Хромосомы - плотные удлиненные или нитевидные образования, видимые только при делении клетки Содержат ДНК, в которой заключена наследственная информация, передающаяся из поколения в поколение

Все органоиды клетки, несмотря на особенности их строения и функций, находятся во взаимосвязи и «работают» на клетку, как на единую систему, в которой связующим звеном является цитоплазма.

Особые биологические объекты, занимающие промежуточное положение между живой и неживой природой, представляют собой вирусы, открытые в 1892 г. Д. И. Ивановским, они составляют в настоящее время объект особой науки - вирусологии.

Вирусы размножаются только в клетках растений, животных и человека, вызывая различные заболевания. Вирусы имеют очень прослое строение и состоят из нуклеиновой кислоты (ДНК или РНК) и белковой оболочки. Вне клеток хозяина вирусная частица не проявляет никаких жизненных функций: не питается, не дышит, не растет, не размножается.

Биология - наука о живых системах, закономерностях и механизмах их возникновения, существования и развития.

Существующая живая природа прошла длительный многоэтапный путь исторического развития. Элементарной структурной единицей биологических систем является клетка.

Впервые клетки с помощью микроскопа увидел и описал в 1665 г. Р. Гук. В 1839 г. Т. Шванн и М. Шлейден создали клеточную теорию, согласно которой клетки являются основой живых существ. В 1858 г. Р. Вирхов дополнил клеточную теорию положением о том, что всякая клетка происходит от другой клетки в результате деления.

Клетки характеризуются физико-химическими свойствами, размерами, формой.

Клетки делятся на прокариотические и эукариотические. Прокариотические клетки более древние (возникли около 3-3,5 млрд лет назад) и устроены более просто. Они образуют организмы-прокариоты (бактерии, сине-зеленые водоросли). Эукариотические клетки возникли позже (около 1-1,4 млрд лет назад), имеют более сложное строение и образуют одноклеточные и многоклеточные организмы-эукариоты (растения, грибы, животные).

Особую группу мельчайших организмов, не имеющих клеточного строения, составляют вирусы. Они занимают пограничное состояние между живыми биологическими системами и неживыми и произошли, очевидно, от клеточных организмов. Изучение морфофункциональных особенностей различных бактерий и вирусов является важным моментом для понимания их участия в возникновении и развитии стоматологических заболеваний человека.

Тема 1.1. Клеточный и неклеточный уровни организации биологических систем

Цель. Знать основные современные методы изучения клеток. Знать и уметь анализировать структуру клеточных и неклеточных организмов при световой или электронной микроскопии. Иметь представление о физико-химических свойствах клеток, функциях их структур.

Задание для студентов

Работа 1. Методы изучения клеток

Изучите и перепишите в тетрадь таблицу.

Название методов

Их характеристика

1. Световая микроскопия

Изучение клеток в световой микроскоп на основе цитохимических, гистохимических, иммунохимических и других исследований. При этом выявляются определенные вещества (например, гликоген, липиды), химические группы (например, альдегидные, аминогруппы) или маркированные специфическими антителами вещества

2. Электронная микроскопия

Трансмиссивная (просвечивающая) электронная микроскопия основана на прохождении излучаемого электронной пушкой пучка электронов через клеточные структуры с неоднородной электронной плотностью, что на флюоресцирующем экране создает плоскостное изображение объекта. Сканирующая (растровая) электронная микроскопия основана на сканировании электронным пучком поверхности изучаемого объекта

3. Поляризационная микроскопия

Изучение структур на основе лучепреломления. Направленный на объект поляризованный пучок света пропускается через расположенный между объективом и окуляром анализатор, определяющий в зависимости от пространственного расположения молекул в объекте характер отклонения плоскости поляризации света

Окончание табл.

Название методов Их характеристика

4. Флюоресцентная микроскопия

Изучение способности веществ излучать видимый свет при освещении объекта ультрафиолетовыми лучами (аутофлюоресценция) или при окраске флюоресцентными красителями, связывающимися с различными структурами или веществами клеток. Например, акридиновый оранжевый, связываясь с ДНК, дает желтозеленое свечение, а с РНК - красно-оранжевое

5. Культура тканей

Клетки предварительно выделяют из органов и тканей и культивируют в специальных приборах в условия стерильности с использованием питательных сред и определенного газового состава. Культура тканей используется для цитологических, фармакологических, токсикологических, микробиологических, генетических исследований, в целях биотехнологий и биоинженерии

6. Рентгеноструктурный анализ

Исследование атомной структуры веществ с помощью дифракции рентгеновских лучей. При этом определяется род атомов, их расположение в структуре кристаллов, жидкостей, молекул

Работа 2. Химический состав клетки

Изучите и перепишите таблицу.

Работа 3. Молекулярная организация биологической мембраны

(по Б. Альберту, 1994) Изучите по рис. 1 трехмерное изображение мембраны. Обратите внимание на то, что липиды в мембране образуют бислой (представлены фосфолипидами, холестеролом и гликолипидами). Белки погружены в бислой липидов, их меньше, молекулы крупнее. Отметьте, что белки могут передвигаться в липидах и именно они в основном определяют специфику функций мембран.

Работа 4. Строение бактерии

Изучите по рис. 2 строение прокариотической (бактериальной) клетки.

Рис. 1. Строение биологической мембраны:

1 - липидный бислой; 2 - молекула белка; 3 - молекула липида

Рис. 2. Строение прокариотической клетки:

1 - жгутик; 2 - рибосомы; 3 - запасные питательные вещества; 4 - капсула; 5 - плазматическая мембрана; 6 - кольцевая молекула ДНК (нуклеоид); 7 - стенка клетки; 8 - мезосома; 9 - цитоплазма; 10 - тилакоиды (фотосинтетические мембраны)

Работа 5. Строение животной клетки

Изучите на микропрепаратах и по рис. 3 и 4 строение животной клетки, включения гликогена и жира. Зарисуйте несколько клеток.

Рис. 3. Строение животной клетки:

1 - оболочка клетки; 2 - цитоплазма; 3 - ядро

Рис. 4. Включения гликогена в клетках эпителия: 1 - включения гликогена в цитоплазме клеток

A. Строение клеток многослойного плоского ороговевающего эпителия слизистой оболочки твердого неба человека. Окраска гематоксилином - эозином (по Л.И. Фалину, 1963).

Б. Включения гликогена в цитоплазме клеток эпителия слизистой оболочки губы человека. ПАС-реакция (по Л.И. Фалину, 1963).

B. Включения жира в цитоплазме клеток печени. Окраска осмием. Рассмотрите под большим увеличением микроскопа клетки печени.

Найдите в цитоплазме жировые включения в виде круглых черных капель различной величины. Зарисуйте несколько клеток с включениями жира.

Обозначьте: 1 - оболочка клетки; 2 - ядро; 3 - цитоплазма с жировыми включениями.

Работа 6. Строение поверхностного аппарата животной клетки (по А.А. Заварзину, 1982) Изучите по рис. 5 и зарисуйте молекулярную структуру поверхностного аппарата.

Рис. 5. Строение поверхностной структуры животной клетки: 1 - поверхностный аппарат клетки; 2 - надмембранные структуры (гликокаликс); 3 - плазматическая мембрана; 4 - субмембранные структуры (микрофиломенты и микротрубочки); 5 - билипидный слой; 6 - интегральный белок; 7 - полуинтегральные белки; 8 - туннельный белок; 9 - поверхностный белок; 10, 11 - гликопротеиды и гликолипиды гликокаликса

Работа 7. Органеллы эукариотических клеток

Заполните таблицу, указав функции перечисленных органелл.

Работа 8. Ультрамикроскопическое строение животной и растительной клетки

Изучите на электроннограммах, по рис. 6 строение эукариотических клеток.

Рис. 6. Строение эукариотической клетки:

а - животного происхождения; б - растительного происхождения; 1 - ядро с хроматином и ядрышком; 2 - плазматическая мембрана; 3 - клеточная стенка; 4 - плазмодесмы; 5 - гранулярная эндоплазматическая сеть; 6 - гладкая эндоплазматическая сеть; 7 - образующиеся пиноцитозные вакуоли; 8 - пластинчатый комплекс; 9 - лизосомы; 10 - жировые включения; 11 - центросома; 12 - митохондрии; 13 - полирибосомы; 14 - вакуоль; 15 - хлоропласт

Работа 9. Сравнительная характеристика прокариотических и эукариотических клеток

Изучите и перепишите таблицу.

Характерные особенности

Прокариотические клетки

Эукариотические клетки

Поверхностный аппарат клетки:

Надмембранные структуры;

Плазматическая мембрана;

Субмембранные структуры

Образованы клеточной стенкой, содержат упрочняющий материал - муреин. Снаружи от клеточной стенки у ряда бактерий располагается капсула

Имеется. Образует впячивания внутрь цитоплазмы - мезосомы и тилакоиды

Не выражены

У растительных клеток образованы клеточной стенкой, содержащей целлюлозу, а у животных клеток - гликокаликсом, состоящим из молекул гликолипидов и гликопротеидов

Образуют опорно-сократительную систему, состоящую из микрофибрилл и микротрубочек

Органеллы цитоплазмы

Рибосомы

Эндоплазматическая сеть, центросома, митохондрии, пластинчатый комплекс, рибосомы, лизосомы. Растительные клетки имеют вакуоль и пластиды

Ядерный аппарат

Ядро отсутствует. Нуклеоид - одна кольцевидная хромосома, расположенная в цитоплазме. Состоит из ДНК и небольшого количества белков

Ядро имеет двухмембранную оболочку, кариоплазму, хроматин (хромосомы), ядрышки. Хромосомы состоят из ДНК и белков

Работа 10. Строение вируса

Изучите по рис. 7 строение бактериофага и его электронную микрофотографию (по Н. Грину, 1990). Зарисуйте схему строения вируса, обозначьте его структуры.

Рис. 7. Строение вируса:

а - строение бактериофага; б - электронная микрофотография бактериофага; 1 - головка вируса; 2 - воротничок; 3 - стержень; 4 - чехол; 5 - базальная пластинка с шипами и отростками

Работа 11. Особенности строения: ДНК- и РНК-содержащих вирусов животных (по А.П. Коротяеву, 1998) Изучите рис. 8 и зарисуйте на выбор несколько вирусов различной формы и размеров.

Рис. 8. ДНК- (а) и РНК-содержащие (б) вирусы

Вопросы для самоподготовки

1. Каковы основные свойства биологических систем?

2. Какие уровни организации биологических систем являются эволюционно обусловленными?

3. Каковы основные положения клеточной теории Т. Шванна, М. Шлейдена, Р. Вирхова? Современное состояние клеточной теории?

4. Каковы основные физико-химические свойства клетки?

5. Каково современное представление о молекулярной организации биологической мембраны и ее функциях?

6. Как устроены прокариотические клетки?

7. Как устроены эукариотические клетки?

8. Как устроены вирусы?

9. Какие существуют гипотезы происхождения эукариотических клеток?

Тестовые задания

1. ОРГАНЕЛЛАМИ ПРОКАРИОТИЧЕСКИХ КЛЕТОК ЯВЛЯЮТСЯ:

1. Митохондрии

2. Рибосомы

3. Центросома

4. Пластинчатый комплекс

2. УСТОЙЧИВОСТЬ ОПРЕДЕЛЕННЫХ ВИДОВ БАКТЕРИЙ

К ЛИЗОЦИМУ СЛЮНЫ И СЛЕЗ ОБЪЯСНЯЕТСЯ НАЛИЧИЕМ

В ИХ КЛЕТОЧНОЙ СТЕНКЕ:

2. Мягких липидов

3. Муреина

4. Полисахаридов

3. БОЛЕЗНЕТВОРНЫЕ СВОЙСТВА НЕКОТОРЫХ ВИДОВ БАКТЕРИЙ ОБУСЛОВЛЕНЫ НАЛИЧИЕМ В ИХ КЛЕТОЧНОЙ СТЕНКЕ:

1. Полисахаридов. муреина

2. Полисахаридов. липидов

3. Полисахаридов. капсульных полисахаридов

4. Полисахаридов. белков

4. ПО СОВРЕМЕННОЙ КЛЕТОЧНОЙ ТЕОРИИ, КЛЕТКА - ЭТО

1. Открытая

2. Закрытая

3. Элементарная

4. Универсальная

5. Целостная

5. СВОЙСТВАМИ БИОЛОГИЧЕСКИХ СИСТЕМ ЯВЛЯЮТСЯ:

1. Целостность и дискретность

2. Размножение

3. Метаболизм

4. Низкая энтропия (негэнтропия)

5. Наследственность и изменчивость

6. Высокая энтропия

6. ЭВОЛЮЦИОННО-ОБУСЛОВЛЕННЫМИ УРОВНЯМИ ОРГАНИЗАЦИИ БИОЛОГИЧЕСКИХ СИСТЕМ ЯВЛЯЮТСЯ:

1. Молекулярно-генетический

2. Клеточный

3. Тканевый

4. Популяционно-видовой

5. Биогеоценотический

7. БИОЛОГИЧЕСКИЕ МЕМБРАНЫ КЛЕТОК ОБЕСПЕЧИВАЮТ:

1. Компартментацию

2. Барьерную функцию

3. Формирование рибосом и полисом

4. Транспорт веществ

5. Рецепцию

Установите соответствие.

8. МЕТОДЫ ИЗУЧЕНИЯ КЛЕТОК:

1. Световая микроскопия

2. Поляризационная микроскопия

3. Флюоресцентная микроскопия

4. Электронная микроскопия

5. Рентгеноструктурный анализ

6. Культура тканей

ХАРАКТЕРИСТИКА МЕТОДА:

а) Исследование живых клеток в питательной среде

б) Изучение конфигурации молекул биополимеров

в) Изучение клеточных структур на основе рассеивания ими пучка электронов

г) Изучение клеток в световом микроскопе

д) Исследование клеток, окрашенных веществами-флюорохромами

е) Изучение клеток на основе двойного лучепреломления)

9. ТИП КЛЕТКИ:

1. Прокариотическая

2. Эукариотическая

ХАРАКТЕРИСТИКА ПОВЕРХНОСТНОГО АППАРАТА:

а) Клеточная стенка содержит муреин

б) Клеточная стенка содержит целлюлозу

в) Плазматическая мембрана

г) Гликокаликс содержит липопротеины и гликолипиды

д) Субмембранные структуры - микрофибриллы и микротрубочки.

10. ОРГАНЕЛЛЫ КЛЕТОК

ЭУКАРИОТ:

1. Гладкая эндоплазматическая

сеть (ЭПС)

2. Рибосомы

3. Митохондрии

4. Центросома

5. Пластинчатый комплекс

6. Лизосомы

ИХ ФУНКЦИИ:

а) Синтез белка

б) Синтез углеводов и липидов

в) Деление клеток

г) Образование энергии

д) Внутриклеточное переваривание веществ

е) Выделение веществ из клетки

Литература

Основная

Кн. 1. - С. 18-21, 24-51, 54-55.

Пехов А.П.

Дополнительная

Альберт Б., Брейд Д. и др. Молекулярная биология клетки. - М.: Мир, 1994. - Т. 1.

Гилберт С. Биология развития. - М.: Мир, 1995. - Т. 1-3. Грин Н, Стаут У., Тейлор Д. Биология. - М.: Мир, 1990. - Т. 1. Заварзин А.А., Харазова А.Д. Основы общей цитологии. - Л.:

Изд-во ЛГУ, 1982.

Тема 1.2. Организация наследственного материала у про- и эукариот. Реализация генетической

информации и ее регуляция

Цель. Знать молекулярную структуру и свойства нуклеиновых кислот, хромосом, стадии биосинтеза белка, принципы регуляции генной активности. Уметь выявлять ДНК в ядрах клеток с помощью реакции Фельгена.

Задание для студентов

Работа 1. ДНК в ядрах клеток

На постоянном препарате под большим увеличением микроскопа рассмотрите в ядрах клеток эпителия слизистой оболочки ротовой полости ДНК, выявленную с помощью реакции Фельгена.

Зарисуйте несколько ядер, в которых ДНК окрашена в пурпурномалиновый цвет.

Работа 2. Молекулярная структура ДНК эукариот

Рассмотрите рис. 1. Зарисуйте строение вторичной (2) структуры

Рис. 1. Строение ДНК эукариот.

Структуры ДНК: 1 - первичная; 2 - вторичная; 3 - третичная.

А - аденин; Г - гуанин - пуриновые азотистые основания; Ц - цитозин; Т - тимин-пиримидиновые азотистые основания; Д - дезоксирибоза; Ф - остаток фосфорной кислоты; Н - нуклеотид

Работа 3. Структурно-функциональная организация ДНК у про- и эукариот

Изучите таблицы, перепишите их в рабочую тетрадь.

Признаки

Прокариоты

Эукариоты

Количество генов

4 тыс. (Е. coli)

Около 30 тыс. (человек)

Количество ДНК

4 млн пар нуклеотидов

3-7 млрд пар нуклеотидов

Кодирующие последовательности

Связь ДНК с

гистонами

Отсутствует

Формирует нуклеосомы

Укладка ДНК

Кольцевая, содержит 100 петель по 40 тыс. пар нуклеотидов

Линейная с замкнутыми в теломеры концами, имеет 4 уровня спирализации

Количество репликонов

Активно работающие участки

Более 90% генов

Менее 10% генов

Процессинг

Отсутствует

Осуществляется при переходе пре-мРНК из ядра в цитоплазму

Регуляция транскрипции

Оперонная

Сложная каскадная

Работа 4. Организация наследственного материала у прокариот (нуклеоид)

Рассмотрите рис. 2 и обратите внимание на укладку ДНК в виде петель.

Рис. 2. Укладка ДНК в нуклеоиде прокариот:

1 - кольцевая молекула ДНК; 2 - укладка ДНК в виде петель; 3 - белки, связывающие петли ДНК

Работа 5. Уровни организации интерфазного хроматина

Рассмотрите по рис. 3 уровни организации наследственного материала у эукариот.

Рис. 3. Схема различных уровней компактизации хроматина: а - нуклеосомная нить; б - микрофибрилла; в - интерфазная хромонема; г - молекулярная организация нуклеосомной нити: 1 - нуклеосома; 2 - ДНК; 3 - гистоны Н2А, Н2В, Н3 и Н4; 4 - гистон Н1

Работа 6. Биосинтез белка у прокариот и эукариот

Изучите и зарисуйте процесс биосинтеза белка по схеме 1.

Схема 1. Биосинтез белка у прокариот (а) и эукариот (б)

Работа 7. Транскрипция и процессинг у эукариот

Изучите транскрипцию и процессинг по рис. 4.

Рис. 4. Транскрипция и процессинг у эукариот:

1 - ДНК; 2 - пре-мРНК; 3 - РНК-полимераза; 4 - кодогенная цепь ДНК; 5 - экзоны; 6 - интроны; 7 - зрелая мРНК; Т - терминатор; КЭП и поли-А - концевые последовательности нуклеотидов; ТАЦ и АУГ - инициаторные триплеты

Работа 8. Трансляция. Этапы рибосомного цикла

Изучите и зарисуйте по рис. 5 процесс трансляции.

Рис. 5. Процесс трансляции:

1 - малая субъединица рибосомы; 2 - большая субъединица рибосомы; 3 - аминоацильный (А) центр; 4 - пептидильный (П) центр; 5 - АУГ-инициаторный триплет мРНК; 6 - терминатор мРНК; 7 - инициаторная тРНК; 8 - аминокислоты формирующегося полипептида; 9 - колпачок

Работа 9. Регуляция активности генов у прокариот (схема Жакоба-Моно)

Рассмотрите и зарисуйте изображение регуляции синтеза белка путем индукции и репрессии (рис. 6).

Рис. 6. Регуляция синтеза белка путем индукции (а, б) и репрессии (в, г): а - структурные гены оперона блокированы; б - дерепрессирование генов индуктором; в - при недостаточном количестве конечного продукта (корепрессора) оперон дерепрессирован, а при избыточном - блокирован (г)

Работа 10. Основные принципы регуляции активности генов у эукариот

Изучите и перепишите.

1. У эукариот не установлено оперонной организации генов, так как гены, определяющие синтез ферментов одной цепи биохимических реакций, могут быть рассеяны в геноме и не имеют, как у прокариот, единой регулирующей системы (ген-регулятор, промотор, оператор и т.д.).

2. Регуляция транскрипции у эукариот комбинационная, т.е. активность каждого гена регулируется большим числом генов-регуляторов.

3. У многих эукариотических генов в ДНК имеется несколько зон, узнаваемых разными белками.

4. У эукариот существуют белки-регуляторы, контролирующие работу других регуляторных белков, и их действие может характеризоваться плейотропным эффектом.

5. В регуляции экспрессии эукариотических генов важную роль играют гены энхансеры (усиливают транскрипцию) и сайленсеры (тормозят транскрипцию).

6. В регуляции транскрипции участвуют гормоны, а генной активности - гистоны хромосом.

7. Регуляция экспрессии генов осуществляется на всех этапах реализации наследственной информации.

Вопросы для самоподготовки

1. Каковы особенности организации наследственного материала у про- и эукариот?

2. Какова молекулярная организация и функции нуклеиновых кислот?

3. Что такое ген? Какое определение гена Вы считаете более точным?

4. Каковы особенности строения генов у про- и эукариот?

5. Что такое генетический код и каковы его свойства?

6. Каковы основные этапы биосинтеза белка, в чем их сущность?

7. Каковы механизмы регуляции генной активности у прокариот (схема Жакоба-Моно)?

8. Каковы основные принципы регуляции генной активности у эукариот?

Тестовые задания

Выберите один правильный ответ.

1. ЭЛЕМЕНТАРНОЙ ЕДИНИЦЕЙ ФУНКЦИИ НАСЛЕДСТВЕННОГО МАТЕРИАЛА ЯВЛЯЕТСЯ:

2. ТРАНСКРИПЦИЮ ОСУЩЕСТВЛЯЕТ ФЕРМЕНТ

1. ДНК-полимераза

2. РНК-полимераза

3. Геликаза

3. МУЛЬТИГЕННЫЕ СЕМЕЙСТВА И КОМПЛЕКСЫ В ГЕНОМЕ

1. Прокариоты

3. Эукариоты

Выберите несколько правильных ответов.

4. СВОЙСТВАМИ ДНК КАК ВЕЩЕСТВА НАСЛЕДСТВЕННОСТИ ЯВЛЯЮТСЯ:

1. Химическая стабильность

2. Репликация

3. Репарация

4. Способность к трансляции

5. БИОСИНТЕЗ БЕЛКА ПРОИСХОДИТ С УЧАСТИЕМ ОРГАНЕЛЛ:

1. Лизосомы

2. Гладкая ЭПС

3. Рибосомы

4. Полисомы

6. ОСОБЕННОСТЯМИ РЕГУЛЯЦИИ ЭКСПРЕССИИ ГЕНОВ У ЭУКАРИОТ ЯВЛЯЮТСЯ:

1. Отсутствие оперонной организации генов

2. Наличие оперонной организации генов

3. Наличие комбинационной регуляции транскрипции

4. Регуляция экспрессии генов на всех этапах реализации генетической информации

Установите соответствие.

7. ТРИПЛЕТЫ ДНК:

ТРИПЛЕТЫ мРНК:

Установите правильную последовательность.

8. УПАКОВКИ ДНК В ХРОМОСОМЕ ЭУКАРИОТ:

1. Хромонема

2. Хроматида

3. Нуклеосомная нить

4. Микрофибрилла

9. БИОСИНТЕЗА БЕЛКА У ЭУКАРИОТ:

1. Трансляция

2. Транскрипция

3. Процессинг

4. Посттрансляция

10. РЕГУЛЯЦИИ ЭКСПРЕССИИ ГЕНОВ У ПРОКАРИОТ

(СХЕМА ЖАКОБА-МОНО):

1. Считывание информации со структурных генов

2. Образование комплекса индуктор-репрессор

3. Поступление индуктора в цитоплазму прокариота

4. Освобождение оператора от репрессора

5. Образование полицистронного транскрипта

6. Синтез отдельных пептидов

Литература

Основная

Биология / Под ред. В.Н. Ярыгина. - М.: Высшая школа, 2001. - Кн. 1. - С. 65-138, 147-152, 163-171.

Пехов А.П. Биология с общей генетикой. - М.: Изд-во РУДН, 1993. - С. 95-112, 141-154, 166-171.

Дополнительная

Альберт Б. и др. Молекулярная биология клетки. - М.: Мир, 1994. -

Гильберт С. Биология развития. - М.: Мир, 1994. Жимулев И.Ф. Общая и молекулярная генетика. - Н.: Сибирское университетское издательство, 2003.

Тема 1.3. Воспроизведение на клеточном уровне

Цель. Знать жизненный цикл клеток, процессы, протекающие в митотическом цикле и при терминальной дифференцировке. Иметь представление о механизмах регуляции клеточного цикла. Уметь определять на микропрепаратах фазы митоза и вычислять митотический коэффициент. Знать сущность и биологическое значение мейоза.

Задание для студентов

Работа 1. Клеточный цикл

Соматические клетки организма образуются в результате митоза. В дальнейшем возможны три варианта жизненного пути (цикла) клеток:

1. Клетки готовятся к делению и заканчивают свою жизнь митозом (митотический цикл).

2. Клетки дифференцируются, функционируют и погибают.

3. Клетки переходят в период G 0 , в котором могут находиться от нескольких часов до многих лет. При определенных условиях они могут перейти из этого периода в митотический цикл или терминальную дифференцировку.

Изучите и зарисуйте схему жизненного цикла клеток, представленную на рис. 1.

Рис. 1. Жизненный цикл клеток:

G 1 - пресинтетический период; S - синтетический период; G 2 - постсинтетический период;

МЦ (митотический цикл) = G 1 + S + G 2 + митоз;

G 0 - период клеточного цикла, который включает:

Клетки пролиферативного пула медленнообновляющихся тканей;

Клетки, вышедшие из МЦ для репарации ДНК;

Клетки, не способные пройти МЦ из-за дефицита питательных веществ или факторов роста;

Резервные и стволовые клетки; n - гаплоидный набор хромосом;

c - одинарный набор ДНК

Работа 2. Удвоение хромосом и репликация ДНК у эукариот

Удвоение ДНК и хромосом происходит в S-периоде митотического цикла.

Репликация ДНК начинается одновременно во многих местах - точках инициации (рис. 2а). Происходит прикрепление комплекса ферментов («репликативная машина»), ДНК освобождается от гистонов и расплетается, образуется репликационный глазок (рис. 2б). Разделение исходных матричных и синтез новых дочерних цепей ДНК в глазке происходят одновременно в обе стороны в репликационных вилках (рис. 2в). После удвоения ДНК с ними соединяются гистоны, и хромосома становится двойной, состоящей из двух хроматид, которые соединены в области центромеры (рис. 2г).

Рис. 2а. Начало репликации ДНК в хромосоме

Рис. 2б. Образование репликационных глазков и репликационных вилок

Рис. 2в. Синтез ДНК в репликационной вилке:

1 - матричные цепи ДНК; 2 - фермент геликаза, разделяющий цепи матричной ДНК; 3 - ДСБ-белки, препятствующие воссоединению цепей ДНК; 4 - праймаза; 5 - РНК-затравка (синтезируется РНК-полимеразой - праймазой); 6 - ДНКполимераза, синтезирующая дочерние цепи; 7 - лидирующая дочерняя цепь ДНК; 8 - лигаза, соединяющая фрагменты Оказаки отстающей цепи ДНК; 9 - фрагмент Оказаки (150-200 нуклеотидов); 10 - топоизомераза

Рис. 2г. Завершение удвоения ДНК и хромосомы

Изучите схему репликации ДНК и удвоения хромосом, представленную на рис. 2а-2г. Зарисуйте рис. 2в.

Работа 3. Митоз растительных клеток

Рассмотрите под большим увеличением микроскопа микропрепарат корешка лука. Найдите клетки, находящиеся в интерфазе и разных фазах митоза. Зарисуйте и обозначьте:

I - стадии митоза: 1 - профаза;

2 - метафаза;

3 - анафаза;

4 - телофаза;

II - интерфаза (неделящаяся клетка).

Работа 4. Митоз клеток человека

Рассмотрите под малым увеличением цитогенетический препарат лимфоцитов крови человека. Найдите клетку в стадии митоза. Переведите на большое увеличение, поставив иммерсионный объектив (х90). Рассмотрите на препарате метафазную пластинку. Обратите внимание на строение хромосом человека, их размеры, расположение центромеры, количество хроматид в метафазной хромосоме. Определите набор хромосом, найдите гомологичные хромосомы. Зарисуйте метафазные хромосомы с различным расположением центромер.

Работа 5. Определение митотического коэффициента

На микропрепаратах корешка лука посчитайте число делящихся и неделящихся клеток в нескольких полях зрения (около 1000 клеток). Определите митотический коэффициент по формуле:

Число митозов

МК выражается в промилле (%о).

Работа 6. Виды тканей в зависимости от уровня клеточной пролиферации

Стабильные - все клетки находятся в состоянии необратимой дифференцировки. Гибель части клеток в течение жизни организма ведет к убыванию общего количества клеток в ткани.

Растущие - количество клеток в ткани увеличивается, так как доля клеток, идущих в митотический цикл, превышает долю клеток, идущих в дифференцировку.

Обновляющиеся - происходит размножение клеток, однако общее количество клеток остается постоянным, так как половина клеток переходит в необратимую дифференцировку и погибает.

Изучите и перепишите таблицу.

Вид ткани

Усредненные параметры пролиферации

P c , % T, часы МК, %%

Быстро обновляющиеся ткани:

красный костный мозг; эпителий ротовой полости, языка, пищевода, желудка и тонкой кишки; эпидермис кожи

Медленно обновляющиеся ткани:

паренхима печени, паренхима почки

Не определяется. Скорость обновления клеток - около 6 мес

Стабильные ткани:

эмаль зубов, кардиомиоциты, нервная ткань

Не определяется

Растущие:

эмбриональные,

регенерирующие,

опухолевые

От 6-10 и более

Примечание: P c - пролиферативный пул; Т - продолжительность митотического цикла; МК - митотический коэффициент. Пролиферативный пул - доля клеток, находящихся во всех фазах митотического цикла и в пуле G 0 , способных к размножению.

Работа 7. Стволовые клетки. Их биологическое и медицинское значение

Стволовые клетки - это клетки, сохраняющие способность к размножению в течение всей жизни организма. В эмбриональном периоде они нужны для развития органов и тканей, в постэмбриональном - для роста организма, обновления тканей, регенерации и вегетативного размножения.

Изучите таблицу.

Вид стволовых клеток Характеристика Значение

Тотипотентные

Способны давать начало любому виду клеток (бластомеры на ранних этапах дробления)

С эмбриональных тотипотентных клеток начинается развитие организма при половом размножении. Соматические дают начало новым организмам при вегетативном размножении

Полипотентные (плюрипотентные)

Способны давать разные виды клеток (клетки зародышевых листков; клетки красного костного мозга)

Формирование органов и тканей развивающегося организма. Необходимы для обновления или регенерации тканей, в которых нет собственных стволовых клеток - эритроцитов и лейкоцитов, нейронов, кардиомиоцитов

Унипотентные

При размножении образуют клетки только одного вида (эпителий ротовой полости, слюнных желез)

Источник клеток для роста, обновления и регенерации органов

Реконструированные эмбриональные

Выделенные эмбриональные стволовые клетки, в которых методами генной инженерии изменен состав генов

Использование в медицине позволяет выращивать органы и ткани с заданными свойствами. Их применение для репродуктивного клонирования является источником генномодифицированных организмов

Применение стволовых клеток в медицине и стоматологии

Совершенствование методов выделения стволовых клеток, изучение факторов, регулирующих их рост и дифференцировку, открывает широкие возможности для использования таких клеток в медицине. Стволовыми клетками, взятыми из пуповинной крови или из других тканей, можно заменять собственные поврежденные клетки в любых органах, не опасаясь их отторжения. Применение эмбриональных клеток, терапевтическое клонирование и использование методов генной инженерии позволят выращивать органы и ткани и получать доступный материал для трансплантации. В настоящее время у экспериментальных животных из стволовых клеток удается получить целые зубы или их отдельные ткани (эмаль, пульпу и другие). Так, зародыши зуба, выращенные у мышей из клеток зубного сосочка, после имплантации взрослым животным вместо удаленных резцов прижились и сформировали полноценные зубы. У человека из стволовых клеток пульпы или апикального бугорка удаленных зубов мудрости удалось вырастить корни и периодонтальные связки, на основе которых восстановили (пока - с помощью обычных методов протезирования) коронку зуба. Таким образом в дальнейшем планируется получение материала для аутотрансплантации. Использование мезенхимальных стволовых клеток и композитных материалов позволило разработать имплантаты для замещения костных дефектов в челюстно-лицевой хирургии. Необходимо отметить, что в настоящее время применение стволовых клеток находится на стадии экспериментальных исследований или клинических испытаний. Их широкое внедрение в практическую медицину - дело ближайшего будущего.

Работа 8. Различные направления дифференцировки клеток ротовой полости

Изучите и зарисуйте схему 1.

Схема 1. Направления дифференцировки клеток ротовой полости Работа 9. Регуляция размножения клеток

В обновляющихся тканях постоянное количество клеток поддерживается в результате саморегуляции, осуществляемой по принципу отрицательной обратной связи. При уменьшении количества клеток включаются механизмы, активирующие протоонкогены. Индукция этих генов ведет к синтезу факторов роста, оказывающих митогенную стимуляцию на клетки, находящиеся в Go -периоде, в том числе стволовые клетки. Происходит их усиленное размножение и увеличение количества. Избыток клеток ведет к репрессии протоонкогенов и активации генов-супрессоров, отвечающих за синтез ингибиторов клеточной пролиферации. Периодические колебания числа делящихся клеток, проявляющиеся в суточных ритмах пролиферации, позволяют достичь состояния динамического равновесия - количество клеток поддерживается на том уровне, который необходим для данной ткани.

Изучите схему 2. Приведите примеры факторов роста и ингибиторов клеточного деления.

Схема 2. Саморегуляция клеточной пролиферации

Работа 10. Сравнительная характеристика нормальных клеток и клеток злокачественных опухолей

Спонтанно или при действии канцерогенных факторов могут происходить мутации протоонкогенов или генов супрессоров, регулирующих размножение клеток. Протоонкогены превращаются в онкогены, которые не реагируют на регуляторные факторы и образуют большое количество факторов роста. Повреждение генов-супрессоров не позволяет сдерживать избыточное размножение клеток - возникает опухоль. Для клеток опухоли характерна генетическая нестабильность - в них возникают новые мутации, которые еще больше нарушают регуляцию клеточной пролиферации. Доброкачественная опухоль может трансформироваться в злокачественную.

Изучите таблицу.

Параметры Нормальные клетки Опухолевые клетки

Окончание табл.

Параметры

Нормальные клетки

Опухолевые клетки

Пролиферативный пул

Постоянный для каждой ткани

Прогрессивно увеличивается

Межклеточные контакты

Ограничивают увеличение количества клеток при контактном торможении

Нарушены: нет контактного торможения пролиферации

Клеточная мембрана

Обеспечивает возможность размножения клеток при контакте с базальной мембраной или другими опорными структурами

Изменена: возможно размножение клеток без контакта с опорными структурами

Адгезия клеток

Нормальная

Снижена: возможен отрыв клеток и метастазирование

Временная характеристика

Одновершинный суточный ритм митозов

Нарушение ритма митозов:

двувершинный, инвертированный, отсутствие ритма

Пространственная организация

Строго определенная

Нарушена вследствие утраты контроля пролиферации и изменения клеточных контактов

Деление клеток

Значительное количество нарушений митозов, амитозы

Набор хромосом

Строго определенный (кариотип)

Значительные изменения числа и структуры хромосом

Работа 11. Мейоз, его особенности по сравнению с митозом

а) Под большим увеличением микроскопа рассмотрите препарат поперечного среза матки аскариды. Найдите овоциты первого порядка на стадии мейоза 1.

Зарисуйте и обозначьте:

1 - овоцит;

2 - цитоплазма;

3 - тетрада.

б) Используя материалы учебника, лекций и наглядных пособий, изучите стадии редукционного и эквационного делений мейоза. Отметьте различия митоза и мейоза. Заполните таблицу.

Сравнительная характеристика митоза и мейоза

Вопросы для самоподготовки

1. Что такое жизненный цикл клеток?

2. Что такое митотический цикл, из каких периодов он состоит? Что происходит в различные периоды митотического цикла?

3. Как образуются новые клетки? Чем заканчивается жизнь клеток?

4. Какие молекулярные процессы лежат в основе удвоения молекулы ДНК? Как происходит удвоение хромосом?

5. Фазы митоза. Биологическая сущность и значение митоза.

6. Что такое политения, эндомитоз и полиплоидия?

7. Что такое митотический коэффициент и как он определяется?

8. Какие виды тканей различают в зависимости от их митотической активности? Чем они характеризуются?

9. Чем отличаются жизненные циклы нормальных и опухолевых клеток?

10. Каковы механизмы регуляции клеточного деления?

11. Что такое стволовые клетки? Виды стволовых клеток и их значение для стоматологии.

12. Клеточные циклы и направления дифференцировки при образовании тканей органов ротовой полости человека.

13. Каково биологическое значение и сущность мейоза?

14. Как изменяется набор хромосом, хроматид и ДНК в процессе мейоза?

15. Какие процессы ведут к рекомбинации генетического материала при мейозе?

Тестовые задания

Выбрать один правильный ответ.

1. УДВОЕНИЕ ХРОМОСОМ ПРОИСХОДИТ В ПЕРИОДЕ КЛЕТОЧНОГО ЦИКЛА:

1. Пресинтетическом

2. Постсинтетическом

3. Синтетическом

5. Go -периоде

2. УВЕЛИЧЕНИЕ КОЛИЧЕСТВА МОЛЕКУЛ ДНК В ХРОМОСОМАХ ОБЕСПЕЧИВАЕТ:

3. Эндомитоз

5. Политения

3. СТВОЛОВЫЕ КЛЕТКИ СОХРАНЯЮТСЯ В ПЕРИОДЕ

КЛЕТОЧНОГО ЦИКЛА:

5. В дифференцировке

4. В МЕЙОЗЕ РАСХОЖДЕНИЕ ГОМОЛОГИЧНЫХ ХРОМОСОМ

ПРОИСХОДИТ В:

1. Профазе I

2. Метафазе I

3. Анафазе I

4. Метафазе II

5. Анафазе II

Выберите несколько правильных ответов.

5. КОНЪЮГАЦИЯ ГОМОЛОГИЧНЫХ ХРОМОСОМ В МЕЙОЗЕ

НЕОБХОДИМА ДЛЯ:

1. Удвоения хромосом

2. Кроссинговера

3. Репарации

4. Амплификации

5. Упорядоченного расположения гомологичных хромосом

6. К БЫСТРО ОБНОВЛЯЮЩИМСЯ ТКАНЯМ ОТНОСЯТСЯ:

1. Нервная

2. Эпителий кишечника

3. Паренхима печени

4. Красный костный мозг

5. Эмаль зубов

6. Эпителий языка

7. Эмбриональные ткани

Установите соответствие.

7. КОЛИЧЕСТВО КЛЕТОК:

1. Не изменяется

2. Увеличивается

3. Уменьшается

а) Растущие

б) Медленно обновляющиеся

в) Быстро обновляющиеся

г) Стабильные

8. ПОСЛЕ ДЕЛЕНИЯ:

3. Эндомитоз

КОЛИЧЕСТВО ХРОМОСОМ (n) И ДНК (с)

СОСТАВЛЯЕТ В КЛЕТКЕ:

9. ФЕРМЕНТ:

1. Геликаза

2. РНК-полимераза

3. ДНК-полимераза

а) Синтез праймеров

б) Вырезание праймеров

в) Разъединение матричных цепей ДНК

г) Стабилизация матричных цепей ДНК

д) Синтез дочерних цепей ДНК

е) Сшивание фрагментов Оказаки

Установить правильную последовательность. 10. СОБЫТИЯ ПРИ РЕПЛИКАЦИИ ДНК:

1. Разделение цепей ДНК

2. Соединение фрагментов Оказаки

3. Синтез праймеров

4. Удаление праймеров

5. Синтез фрагментов Оказаки

Литература

Основная

Биология / Под ред. В.Н. Ярыгина. - М.: Высшая школа, 2001. -

Кн. 1. - С. 55-60, 72-79, 118-144, 200-207.

Пехов А.П. Биология и общая генетика. - М.: Изд-во РУДН, 1993. -

С. 64-80, 107-112.

Дополнительная

Жимулев И.Ф. Общая и молекулярная генетика. - Новосибирск: Изд-во Новосибирского ун-та, 2002.

Лушников Е.Ф., Абросимов А.Ю. Гибель клетки (апоптоз). - М.: Медицина, 2001.

Епифанова О.И. Лекции о клеточном цикле. - М.: КМК, 2003.

Биология клетки в общих чертах известна каждому из школьной программы. Предлагаем вам вспомнить изученное когда-то, а также открыть для себя что-то новое о ней. Название "клетка" было предложено еще в 1665 году англичанином Р. Гуком. Однако лишь в 19 веке ее начали изучать систематически. Ученых заинтересовала, среди прочего, и роль клетки в организме. Они могут быть в составе множества различных органов и организмов (икринок, бактерий, нервов, эритроцитов) или же быть самостоятельными организмами (простейшими). Несмотря на все их многообразие, в функциях и строении их обнаруживается много общего.

Функции клетки

Все они различны по форме и зачастую по функциям. Могут отличаться довольно сильно и клетки тканей и органов одного организма. Однако биология клетки выделяет функции, которые присущи всем их разновидностям. Именно здесь всегда происходит синтез белков. Этот процесс контролируется Клетка, которая не синтезирует белки, в сущности мертва. Живая клетка - это та, компоненты которой все время меняются. Однако основные классы веществ при этом остаются неизменными.

Все процессы в клетке осуществляются с использованием энергии. Это питание, дыхание, размножение, обмен веществ. Поэтому живая клетка характеризуется тем, что в ней все время происходит энергетический обмен. Каждая из них обладает общим важнейшим свойством - способностью запасать энергию и тратить ее. Среди других функций можно отметить деление и раздражимость.

Все живые клетки могут реагировать на химические или физические изменения среды, окружающей их. Это свойство называется возбудимостью или раздражимостью. В клетках при возбуждении меняется скорость распада веществ и биосинтеза, температура, потребление кислорода. В таком состоянии они выполняют функции, свойственные им.

Строение клетки

Ее строение довольно сложно, хотя она считается самой простой формой жизни в такой науке, как биология. Клетки расположены в межклеточном веществе. Оно обеспечивает им дыхание, питание и механическую прочность. Ядро и цитоплазма - основные составные части каждой клетки. Каждая из них покрыта мембраной, строительный элемент для которой - молекула. Биология установила, что мембрана состоит из множества молекул. Они расположены в несколько слоев. Благодаря мембране вещества проникают избирательно. В цитоплазме находятся органоиды - мельчайшие структуры. Это эндоплазматическая сеть, митохондрии, рибосомы, клеточный центр, комплекс Гольджи, лизосомы. Вы лучше поймете, как выглядят клетки, изучив рисунки, представленные в этой статье.

Мембрана

Эндоплазматическая сеть

Этот органоид был назван так из-за того, что он находится в центральной части цитоплазмы (с греческого языка слово "эндон" переводится как "внутри"). ЭПС - очень разветвленная система пузырьков, трубочек, канальцев различной формы и величины. Они отграничены от мембранами.

Различаются два вида ЭПС. Первый - гранулярная, которая состоит из цистерн и канальцев, поверхность которых усеяна гранулами (зернышками). Второй вид ЭПС - агранулярная, то есть гладкая. Гранами являются рибосомы. Любопытно, что в основном гранулярная ЭПС наблюдается в клетках зародышей животных, тогда как у взрослых форм она обычно агранулярная. Как известно, рибосомы являются местом синтеза белка в цитоплазме. Исходя из этого, можно сделать предположение, что гранулярная ЭПС бывает преимущественно в клетках, где происходит активный синтез белка. Агранулярная сеть, как считается, представлена в основном в тех клетках, где протекает активный синтез липидов, то есть жиров и различных жироподобных веществ.

И тот и другой вид ЭПС не просто принимает участие в синтезе органических веществ. Здесь эти вещества накапливаются, а также транспортируются к необходимым местам. ЭПС также регулирует обмен веществ, который происходит между окружающей средой и клеткой.

Рибосомы

Митохондрии

К энергетическим органоидам относятся митохондрии (на фото выше) и хлоропласты. Митохондрии - это своеобразные энергетические станции каждой клетки. Именно в них извлекается энергия из питательных веществ. Митохондрии имеют изменчивую форму, однако чаще всего это гранулы или нити. Число и размеры их непостоянны. Это зависит от того, какова функциональная активность той или иной клетки.

Если рассмотреть электронную микрофотографию, можно заметить, что митохондрии имеют две мембраны: внутреннюю и наружную. Внутренняя образует выросты (кристы), устланные ферментами. Благодаря наличию крист общая поверхность митохондрий увеличивается. Это важно для того, чтобы деятельность ферментов протекала активно.

В митохондриях ученые обнаружили специфические рибосомы и ДНК. Это позволяет этим органоидам самостоятельно размножаться в процессе деления клетки.

Хлоропласты

Что касается хлоропластов, то по форме это диск или шар, имеющий двойную оболочку (внутреннюю и наружную). Внутри этого органоида также имеются рибосомы, ДНК и граны - особые мембранные образования, связанные как с внутренней мембраной, так и между собой. Хлорофилл находится именно в мембранах гран. Благодаря ему энергия солнечного света превращается в химическую энергию аденозинтрифосфат (АТФ). В хлоропластах она используется для синтеза углеводов (образуются из воды и углекислого газа).

Согласитесь, представленную выше информацию нужно знать не только для того, чтобы сдать тест по биологии. Клетка - это строительный материал, из которого состоит наш организм. Да и вся живая природа - сложная совокупность клеток. Как вы видите, в них выделяется множество составных частей. На первый взгляд может показаться, что изучить строение клетки - непростая задача. Однако если разобраться, эта тема не так уж и сложна. Ее необходимо знать, чтобы хорошо разбираться в такой науке, как биология. Состав клетки - одна из основополагающих ее тем.

Все живые существа и организмы на состоят из клеток: растения, грибы, бактерии, животные, люди. Несмотря на минимальный размер, все функции целого организма выполняет клетка. Внутри нее протекают сложные процессы, от которых зависит жизнеспособность тела и работа его органов.

Вконтакте

Структурные особенности

Учёные занимаются изучением особенности строения клетки и принципов ее работы. Детально рассмотреть особенности структуры клетки можно только при помощи мощного микроскопа.

Все наши ткани — кожные покровы, кости, внутренние органы состоят из клеток, которые являются строительным материалом , бывают разных форм и размеров, каждая разновидность выполняет определённую функцию, но основные особенности их строения сходны.

Сначала выясним, что лежит в основе структурной организации клеток . В ходе проведенных исследований ученые установили, что клеточным фундаментом является мембранный принцип. Получается, что все клетки образованы из мембран, которые состоят из двойного слоя фосфолипидов, куда с наружной и внутренней стороны погружены молекулы белков.

Какое свойство характерно для всех типов клеток: одинаковое строение, а также функционал — регулирование процесса обмена веществ, использование собственного генетического материала (наличие и РНК ), получение и расход энергии.

В основе структурной организации клетки выделяются следующие элементы, выполняющие определенную функцию:

  • мембрана — клеточная оболочка, состоит из жиров и протеинов. Ее основная задача – отделять вещества, находящиеся внутри, от внешней среды. Структуру имеет полупроницаемую: способна пропускать и оксид углерода;
  • ядро – центральная область и главный компонент, отделяется от других элементов мембраной. Именно внутри ядра находится информация о росте и развитии, генетический материал, представленный в виде молекул ДНК, входящих в состав ;
  • цитоплазма — это жидкая субстанция, образующая внутреннюю среду, где происходят разнообразные жизненно важные процессы, содержит в себе очень много важных компонентов.

Из чего состоит клеточное содержимое, каковы функции цитоплазмы и ее основных компонентов:

  1. Рибосома — важнейший органоид, который необходим для процессов биосинтеза белков из аминокислот, белки выполняют огромное количество жизненно важных задач.
  2. Митохондрии – ещё один компонент, находящийся внутри цитоплазмы. Его можно описать одним словосочетанием – энергетический источник. Их функция заключается в обеспечении компонентов питанием для дальнейшего производства энергии.
  3. Аппарат Гольджи состоит из 5 – 8 мешочков, которые соединены между собой. Основная задача этого аппарата – передача протеинов в другие части клетки для обеспечения энергетического потенциала.
  4. Очистку от повреждённых элементов производят лизосомы .
  5. Транспортировкой занимается эндоплазматическая сеть, по которой белки перемещают молекулы полезных веществ.
  6. Центриоли отвечают за воспроизводство.

Ядро

Поскольку — клеточный центр, поэтому следует уделить его строению и функциям особое внимание. Данный компонент является важнейшим элементом для всех клеток: содержит наследственные признаки. Без ядра стали бы невозможными процессы размножения и передачи генетической информации . Посмотрите на рисунок, изображающий строение ядра.

  • Ядерная оболочка, которая выделена сиреневым цветом, пропускает внутрь нужные веществам и выпускает обратно через поры — маленькие отверстия.
  • Плазма представляет собой вязкую субстанцию, в ней находятся все остальные ядерные компоненты.
  • ядро размещается в самом центре, имеет форму сферы. Его главная функция – образование новых рибосом.
  • Если рассмотреть центральную часть клетки в разрезе, то можно увидеть малозаметные синие переплетения — хроматин, главное вещество, который состоит из комплекса белков и длинных нитей ДНК, несущих в себе необходимую информацию.

Клеточная мембрана

Давайте подробнее рассмотрим работу, строение и функции этого компонента. Ниже представлена таблица, наглядно показывающая важность внешней оболочки.

Хлоропласты

Это ещё один наиважнейший компонент. Но почему о хлоропластах не было упомянуто раньше, спросите вы. Да потому, что этот компонент содержится только в клетках растений. Главное различие между животными и растениями заключается в способе питания: у животных оно гетеротрофное, а у растений автотрофное. Это означает, что животные не способны создавать, то есть синтезировать органические вещества из неорганических – они питаются готовыми органическими веществами. Растения же, напротив, способны осуществлять процесс фотосинтеза и содержат особые компоненты — хлоропласты. Это пластиды зеленого оттенка, содержащие вещество хлорофилл. С его участием энергия света преобразуется в энергию химических связей органических веществ.

Интересно! Хлоропласты в большом объеме сосредоточены главным образом в надземной части растений — зелёных плодах и листьях.

Если вам зададут вопрос: назовите важную особенность строения органических соединений клетки, то ответ можно дать следующий.

  • многие из них содержат атомы углерода, которые обладают различными химическими и физическими свойствами, а также способны соединяться друг с другом;
  • являются носителями, активными участниками разнообразных процессов, протекающих в организмах, либо являются их продуктами. Имеются ввиду гормоны, разные ферменты, витамины;
  • могут образовывать цепи и кольца, что обеспечивает многообразие соединений;
  • разрушаются при нагревании и взаимодействии с кислородом;
  • атомы в составе молекул объединяются друг с другом с помощью ковалентных связей, не разлагаются на ионы и потому медленно взаимодействуют, реакции между веществами протекают очень долго — по нескольку часов и даже дней.

Строение хлоропласт

Ткани

Клетки могут существовать по одной, как в одноклеточных организмах, но чаще всего они объединяются в группы себе подобных и образуют различные тканевые структуры, из которых и состоит организм. В теле человека существует несколько видов тканей:

  • эпителиальная – сосредоточена на поверхности кожных покровов, органов, элементов пищеварительного тракта и дыхательной системы;
  • мышечная — мы двигаемся благодаря сокращению мышц нашего тела, осуществляем разнообразные движения: от простейшего шевеления мизинцем, до скоростного бега. Кстати, биение сердца тоже происходит за счёт сокращения мышечной ткани;
  • соединительная ткань составляет до 80 процентов массы всех органов и играет защитную и опорную роль;
  • нервная — образует нервные волокна. Благодаря ей по организму проходят различные импульсы.

Процесс воспроизводства

На протяжении всей жизни организма происходит митоз – так называют процесс деления, состоящий из четырёх стадий:

  1. Профаза . Две центриоли клетки делятся и направляются в противоположные стороны. Одновременно с этим хромосомы образуют пары, а оболочка ядра начинает разрушаться.
  2. Вторая стадия получила название метафазы . Хромосомы располагаются между центриолями, постепенно внешняя оболочка ядра полностью исчезает.
  3. Анафаза является третьей стадией, на протяжении которой продолжается движение центриолей в противоположном друг от друга направлении, а отдельные хромосомы также следуют за центриолями и отодвигаются друг от друга. Начинает сжиматься цитоплазма и вся клетка.
  4. Телофаза – окончательная стадия. Цитоплазма сжимается до тех пор, пока не появятся две одинаковые новые клетки. Формируется новая мембрана вокруг хромосом и появляется одна пара центриолей у каждой новой клетки.

Интересно! Клетки у эпителия делятся быстрее, чем у костной ткани. Все зависит от плотности тканей и других характеристик. Средняя продолжительность жизни основных структурных единиц составляет 10 дней.

Строение клетки. Строение и функции клетки. Жизнь клетки.

Вывод

Вы узнали каково строение клетки — самой важной составляющей организма. Миллиарды клеток составляют удивительно мудро организованную систему, которая обеспечивает работоспособность и жизнедеятельность всех представителей животного и растительного мира.

Похожие публикации